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Abstract

When buying an airplane ticket there are

multiple factors that can result in largely

different prices in flights. As a result, there

exist multiple different avenues for price

discrimination to occur. Here, we investigate

the effects of local demographics on the

pricing of a given flight. Specifically, we look

into potential biases with regard to race and

income in terms of the metropolitan area. This

is done through bias analysis and mitigation

via the AIF360 toolkit. In turn, we aim to

develop models that balance both accuracy as

well as fairness between our classes to provide

insights for a better pricing strategy for airlines

and pricing information to consumers. In terms

of pricing bias based upon metropolitan

demographics, we found that there was little

bias present in the data and in the models we

developed. While the bias was not significant,

we found a correlation between our set

demographics and pricing as well as created

models that balance both fairness and accuracy

which demonstrates practical applicability of

bias mitigation techniques.

Hypothesis

We anticipated that there would be a

significant difference between flight fares

when comparing our privileged and

unprivileged classes. Here, our classes will be

determined by race (white and non-white), and

income (high and low) of the local airport

metro area population. Low income here is

defined to be whether the median of the local

income is less than or equal to the 25th

quantile threshold found from a distribution of

median incomes across all metro areas.

Introduction

Price discrimination is the practice of setting

significantly different prices for different

groups of people for the same or similar

commodity. This is specifically known as

third-degree price discrimination. As a result,

this can often lead to optimized profits for the

seller, with a subset of buyers left paying

higher prices. In the airline industry, there are

several features such as distance and airport

that can affect the fare price as well as external

forces such as market concentration and
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competitors. In turn, the local demographics of

airport metro areas are features we hypothesize

may distinguish significant pricing

discrimination between majority and minority

populations in airfare prices when comparing

similarly comparable flights. The goal here is

to identify potential factors in the dataset that

may be causing biases in model

implementations, mitigating these biases, and

ultimately developing fairer machine learning

models for fairer airfare pricing.

Related Literature

Price discrimination is an issue that is being

observed by many through various similar

projects. The first project we will be evaluating

is a project that focuses on investigation on

price discrimination within the airline industry

by comparing prices to similar users. The

project was conducted by Stefano Azzolina

from the Department of Economics at the

University of Bologna, Manuel Razza from   the

Italian Competition Authority, Kevin Sartiano

from the Department of Engineering at

Uninettuno University, and Emanuel

Weitschek from the Department of Engineering

at Uninettuno University and the Italian

Competition Authority. Data for study was

gathered through a software that obtained user

information from information provided as they

purchase airline tickets online. The Flight Data

Acquisition Software collected data under two

workflows which are flight search similarities

and flight search differences. The results of this

study revealed that price discrimination was

prevalent as we see differences in prices

amongst different types of users. The study

goals are similar to the investigation we

analyzed through this project. However,

instead of using data from users, we collected

data from survey data and utilized the AI

Fairness 360 toolkit. Another difference is that

our project observes comparison among flight

paths, which entails ticket purchasers within

the same origin and destination locations.

The next study was conducted by Kevin R.

Williams used airline dynamics to create a

model to predict pricing. Airlines dynamics

are factors such as demand and scarcity that

make airlines adjust their prices daily based on

potential customers' willingness to purchase

tickets for airlines set prices. The reality is that

airline industries use these factors to make a

profit. The proposed model utilizes stochastic

demand features and revenue management

models to predict airline ticket pricing. The

model reveals the competitiveness that airlines

pricing can lead to price discrimination.

Employing similar models and analysis on

airline data can help prevent price

discrimination that are created out of the

competitiveness of purchasing airline tickets.

Compared to our projects, both create models

to predict ticket pricing. We believe that the

model from Kevin R. Williams focuses on the

domain knowledge of economics that reveals

the reasoning behind pricing. Our model

focuses on the fairness of the model, in fact



attempting to mitigate the bias within our

model.

Datasets

The airline ticket and pricing data are provided

by the Airline Origin and Destination Survey

(DB1B). The DB1B database is a dataset that

is maintained by the United States Department

of Transportation Bureau of Transportation

Statistics. Origin and Destination Survey

(DB1B) is a 10% sample of airline tickets from

reporting carriers in the United States. Data

includes origin, destination and other itinerary

details of passengers transported. The DB1B

database has data from 1993 to the 2nd Quarter

of 2022, however, due to the constraints of our

computing environment capabilities, we are

only using the data from 2018 to the most

recent available record in our project.

While the DB1B database does not include

demographics such as race, age, or income, for

our purposes, we are instead using U.S. Census

data in order to get feature variables that

describe the local populations of the origin

airport metropolitan area and the destination

airport metropolitan area.

By merging these two datasets, we are able to

investigate the relationship between local

population demographics and airline ticket

prices. Before beginning our analysis, it is

important to establish that our target variable,

airline ticket fare per mile (FarePerMile), will

be categorized into two classes under a new

variable called fare_class. For the preferred

outcome or group, we will have fares that are

below the third quartile or 75th percentile of

the fare-per-mile distribution. For the

unpreferred outcome or group, we will have

fares that are above the third quartile which

essentially represents a high-cost fare. This

then turns our predictive task into a

classification problem instead of a regression

which is necessary as we are concerned with a

range of values being fair or belonging to the

same group instead of how precisely the exact

cost of two tickets is.

The database also does not include the general

details (such as total passenger count, amount

of flights on a given route) from a given set of

flight details. To further enhance our ability to

capture a well-behaved model for our analysis,

we also incorporated data from the Air Carrier

Statistics (Form 41 Traffic)- U.S. Carriers

(T-100) from the United States Department of

Transportation Bureau of Transportation

Statistics. This dataset contains domestic

market data reported by U.S. air carriers,

including carrier, origin, destination, and

service class for enplaned passengers, freight

and mail when both origin and destination

airports are located within the boundaries of

the United States and its territories.

EDA

We conducted our EDA using the database

listed above and on other associated datasets.

In this section, we would present our



methodology during our analysis and how the

detailed findings help our future progress in

project findings.

Processing the DB1B Dataset

The original Ticket in the DB1B dataset

records information on the itinerary level.

Since one itinerary might have multiple flights

and destinations depending on whether it is a

round trip or has multiple stops along the way.

Therefore, we merge the Ticket dataset with

the Market/Coupon dataset on itinerary ID, and

it allows us to look closer into ticket

information on an individual flight level. On

average for each quarter the combined dataset

has around 6 million rows and 26 useful

features after we exclude other redundant

columns, where each row represents a ticket

and its associated information. Details of the

columns and variables are available on the

project website.

Since the DB1B dataset is build on the ticket

level, meaning that the ticket could have

segments that represents either be a one-way, a

round-trip or a muilt-destination ticket.

Therefore, there is not a clearly define

destination. We decided to use observe the

destination in dataset in based on various

assumptions shown below, which are also

implemented in our “sparkmanager.py”:

Assumption Method
name in
module

Resulting
dataset size

The last
destination is

“default” 98898392
(total

the real
destination

amount of
tickets)

The median
point is the
real
destination

“midpoint” 98898392
(total
amount of
tickets)

Each
segment
should be
separate

“segment” 247175573
(all avaiable
rows in the
dataset)

After our data wrangling work, we

immediately found the default approach is

problematic because over 60% of the tickets

are considered roundtrips. As a result, over

60% of tickets using such an approach results

in the same origin and destination. The median

approach shows some promising results,

however it also means it is losing a lot of

information that could be able to be

represented in the segments. Therefore, after

our experiment on the three approaches, we

decided to treat each segment as an individual

ticket in our future analysis as it would keep

the most information intact.

Fare Per Mile in 2022 dollars



Ticket Prices in 2022 dollars

To further perform a better and more accurate

analysis, we also used the cpi module in

Python to change all of our prices into 2022

prices from their respective years. The prices

shown below the EDA section are the original

number of prices, unless specifically stated of

using the cpi adjusted 2022 prices.

Trends and Findings of the DB1B Dataset

Distribution of FarePerMile in DB1B prior
to outlier filtering

Distribution of FarePerMile in DB1B after
to outlier filtering

Our focus on pricing prompted us to focus

most of our effort in it when it comes to

finding trends in the dataset. Therefore, it

becomes essential to analyze the FarePerMile

(fare per mile) and ItinFare (ticket itinerary

fare). We immediately look into the general

distribution of the two variables and find a

small but extremely strong set of outliers.

After a thorough investigation, we discovered

that the bottom 1%-tile and the upper 99%-tile

had huge outliers that swayed the variable.

Therefore, we decided to drop those rows in

our following analysis due to the belief that

such may be a result of human error.



By plotting them against their respected year

and quarters, we found that they in general

follow each other quite well.

In the case of FarePerMile, the variable is

relatively stable, prior to the 2020 Q1,

hovering between 26-27 cents in each quarter.

There is a significant drop during the first 3

quarters of 2020 from the average of 25 cents

to the lowest at 18 cents. The variable since

then steadily rebounded to 24 cents at the last

quarter of 2021, and spiked to the highest point

in 2022 Q2 and Q3 of 28 cents.

In the case of ItinFare, the variable is relatively

stable, prior to the 2020 Q1, hovering between

$400-$430 in each quarter. There is a

significant drop during the first 3 quarters of

2020 from the average of $390 to the lowest at

$270. The variable since then steadily

rebounded to $390 at the last quarter of 2021,

and spiked to the highest point in 2022 Q2 and

Q3 of $470. It is important to note that this

variable is highly influenced by the rate of

round-trip travel, as a round-trip ticket fare is

counted as the same as a one-way trip ticket in

this variable. Our analysis found (also shown

below), on average 60% of the tickets are

classified as round-trip travels.

We then focused on finding whether there is a

noticeable difference between the quarters of

the ticket used on travel.

Our analysis shows that in the years prior to

the pandemic (2016-2019), both FarePerMile

and ItinFare follows a general trend with both

Q2 and Q4 peaking in each respective years.

However, the same analysis provided insight

on the significance of the pandemic effects

during the later years of the dataset.

Average FarePerMile of each reporting
carrier in DB1B

Airline-wise, low-cost airlines like Spirit have

an average fare-per-mile of 0.1$, while

Regional Airline like Silver Airways has the

highest average fare-per-mile of 0.6$. On the

other hand, Legacy carriers like United, Delta,



and American Airlines have relatively

moderate and similar average fare-per-mile (~

0.3$), which we think can be a scenario of

market competition. Nevertheless, Legacy

carriers have a dominant market share, over

65% of the tickets in this combined dataset

belong to these airlines.

By visualizing the dollar amount presented as

revenue, we allow us to investigate whether

there are airlines that have a sharp competitive

edge, where they earn more money yet by

flying fewer passengers. Our analysis shows

that this is likely not the case.

To further investigate the significant impact

during the pandemic, we decided to look into

the flight volumes associated with the dataset

more. We found it matches our findings and

expectations.

Processing the US Census and Defining the

Protected Groups

Distribution of White Population Ratio in
the Dataset

Distribution of Household Median Income in
the Dataset

The racial and income groups for each airport’s

metropolitan area information taken from the

US Census allows us to gather information of

our protected groups. After conducting data

cleaning with the Census data, we produce two

separate datasets, Race and Income. Both

dataset has 754 rows and 8 columns, where

each row represents a Micro/Metro Area that is

related to an airport code that is listed in the

DB1B dataset and has corresponding

demographic details (e.g. ratio of White and

Non-White population).



The Income dataset has 513 rows and 5

columns, where each row represents a

Micro/Metro Area and has corresponding

income statistics. Based on the shared Area

code, we will merge these two datasets with

the combined ticket dataset above. Rows that

don’t have matching area codes are omitted

during the merging process. In other words, it

is an inner merge as we want to ensure each

ticket purchased comes with detailed

information about its origin/destination city.

Bias Discoveries on the DB1B Dataset

To ensure our bias discovery process would be

as fair as possible, we used the 2022 dollars for

this part of the analysis. We first started with

uncovering the difference of means in fare per

mile between different protected groups and

privileged groups based on their destinations.

Based on origination of flight:

- Privileged Group:

- High income

- Dominant Race

- Protected Group

- Low income

- Minority Race

Protected
Attribute

Privileged
group mean

Protected
group mean

Income 0.2373 0.3177



Ethnicity 0.2978 0.2859

The privileged group for the attribute of

income pays the least of 0.2373 while the

protected group of income pays the most at

0.3177 fare per mile. For ethnicity, the

privileged group pays more than the protected

group, and there is a much closer margin

between them which implies that pricing is

more balanced than income.

Based on destination of flight:

- Privileged Group:

- High income

- Dominant Race

- Protected Group

- Low income

- Minority Race

Protected
Attribute

Privileged
group mean

Protected
group mean

Income 0.2385 0.3242

Ethnicity 0.3106 0.2894

Similar to above, when grouped on destination

of flight, the privileged group of income pays

the least at 0.2385 while the protected group

pays the most at 0.3242. With ethnicity, the

privileged group pays more than the protected

group with a smaller margin.

Flight with different groups in origin and

destination

- Privileged Group:

- High income

- Dominant Race

- Protected Group

- Low income

- Minority Race

Groups Fare Per mile
mean

Income Privileged →
Protected

0.2734

Income Protected →
Privileged

0.2648

Ethnicity Protected →
Privileged

0.2648

Ethnicity Privileged →
Protected

0.2502

When looking at FarePerMile across income

and ethnicity at the same time, we can see that

going from an income-privileged area to a

protected area has the highest fare per mile, but

the margins between each are generally small.

Flight with same groups in origin and

destination:

- Privileged Group:

- High income

- Dominant Race

- Protected Group

- Low income

- Minority Race

Protected
Attribute

Privileged
group mean

Protected
group mean

Income 0.2077 0.4519

Ethnicity 0.2416 0.3067

When we make both the origin and destination

city the same type (privileged to privileged),



we see that margins increase even further. With

the protected income group having a much

higher cost of 0.4519 than the privileged group

income class of 0.2077, and the protected

ethnicity class also pays more at 0.3067

compared to 0.2416.

Since the small amount of representation in the

dataset of the protected groups shown above,

compared to the privilege groups. Although we

find some great differences between groups,

we did not find such a difference statistically

significant enough. Therefore, we may not

conclude that the dataset itself is inherently

biased.

Another discovery that we take to further

investigate the relative larger differences

between the high income and low income

group is to see whether there is a strong

difference in their standard deviation, which if

it is lower shows a low price variability and

vice-versa.

We found out that the low-income groups

consistently has a lower standard-deviation

compared to the high income group. However,

this may also be the result of there is far less

samples of low income related flights included.

Further Discoveries and Engineered

Variables

After recognizing the general trend of the

pricing variables and the relationship with

other variables in the dataset, we looked into

other deeper trends to determine the predictors

and predicted variables.

Fare Class Model

Distribution of FarePerMile Based on

FareClass

For the Fare Class Model, further analysis of

the relationship between FareClass and

FarePerMile features needs to be evaluated to

help classify the various fare classes as

favorable and unfavorable fare class for bias

analysis which will be described in more detail

later on in the report. The following histograms

show the frequency of FarePerMile for the

different Fare Classes.

FarePerMile Distribution for Class X

FarePerMile Distribution for Class Y

FarePerMile Distribution for Class C



FarePerMile Distribution for Class D

FarePerMile Distribution for Class F

FarePerMile Distribution for Class G

FarePerMile Distribution for Class U

As noted in previous analysis, outliers had to

be removed, specifically for FareClass X

analysis. Based on the distributions, we can

categorize classes Y, C, and D as favorable

classes, with their distributions being close to

the mean or even lower to the mean of

FarePerMile.

Transforming Distance to Categorical

Variable

To further discover how flights are different

based on the distance traveled, we create a

categorical variable, “Flight Length,” and

segment our ticket into three categories:

“Short-haul” flights with Miles flown less than

1725 Miles, “Medium-haul” flights with Miles

flown between 1725 and 3450 Miles, and

“Long-haul” flights with Miles flown bigger

than 3450 Miles. We group by the variable

“Flight Length” and discover that “Short-haul”

and “Medium-haul” take up around 80% of all

the recorded flights (around 40% each).

Although our EDA focuses on the first quarter

of 2022, this ratio varies across years and



quarters. The average fare per mile is the

highest for “Short-haul” flights and the lowest

for “Long-haul” flights. In other words,

passengers on short-haul flights tend to pay

more for each mile they are flying. If most of

the flights that come out of an airport are

short-haul, then residents that live around this

airport might have to bear a higher fare per

mile when purchasing flight tickets.

The correlation values also confirm the above

finding; we saw a negative correlation value

(-0.16) between the target variable

“fare-per-mile” and the “MilesFlown.” In

addition, we also saw other features like

“Coupons”, “Passengers”, “RoundTrip”,

“median_income”, “None-white alone

proportion_dest”, and “white alone

proportion_dest” having a moderate

correlation (absolute value of correlation >

0.01, choosing this threshold given that there

are so many features in the dataset) with

“fare-per-mile.” The correlation values suggest

there are connections between flight fare and

demographic information, implying potential

biases with regard to race and income in

price-setting models.

High Price Indicator Model

As shown in below section, the model uses the

CDF of the price variables as the sensitivity

metric, based on the origin, destination and the

reporting carrier.

The sensitivity metric is calculated by taking

all the ticket prices and the related fare per

mile in 2022 dollars from the dataset

(2016-2022) and ranking them in ascending

order between the interval of 0 to 1 in groups

of origin, destination, and the airline. On the

training data, 0 represents the lowest price

available in the dataset on a given city-pair and

airline, and 1 represents the highest price

available in the dataset on a given city-pair and

airline. Essentially, the values are the CDF of

the distribution. All price of the data is

adjusted by the CPI index (Airfare category) to

2022 dollars. The model was trained based on

data from 2016-2022 DB1B dataset.

We interpret if the model predicts 1, means that

the passenger would be least likely to make a

purchase of a fare and the airline would most

likely offer such a fare. If the model predict 0,

means the passenger would be most likely to

make a purchase of a fare and the airline would



least likely offer such a fare. If the model

predicts anything that is > 1 or < 0, it means

that the price is never going to happen.

Model Development
High Price Indicator Model

For our models, the data is grouped by flight

path in order to determine if our privileged

class would be predicted to pay lower

FarePerMiles in contrast to our unprivileged

groups. Here, our privileged group would be

white majority populations when summing up

flight origin and flight destination metropolitan

areas. Our unprivileged group is non-white

majority when summing up flight origin and

flight destination areas. This variable that we

created is defined as our “Race” variable and it

contains the group information we will be

using as previously described. The variables

used in our models for predicting high or low

FarePerMile are "RoundTrip", "OnLine",

"DistanceGroup", "OriginCityMarketID",

"LastCityMarketID", "RPCarrier", and

"ItinGeoType." Our group has created various

models that aim to predict the FarePerMile

model while mitigating bias. We will be listing

the models that are the most accurate or

insightful in understanding and mitigating the

existing bias to demonstrate the trade-off

between debiasing and accuracy.

Our baseline models are simple logistic

regression and random forest regression

models in order to gauge predictive bias and

performance. Our target variable is created by

applying a threshold to FarePerMile where any

flight path that has a median income greater

than the 75th percentile in terms of median

income In testing, we are using 2019 data in

order to avoid COVID-related shifts in typical

air trends as we earlier found in exploratory

data analysis that the trend of average

FarePerMile drastically changed during 2020,

2021, and even still in the currently available

2022 data.

In terms of performance, using the

aforementioned variables alongside a logistic

regression classifier resulted in the highest best

balanced accuracies of about 87% when using

data from 2019. The random forest classifier

has worse performance with about 60%

accuracy.

Price Sensitivity Model

As we focuses on how to reduce biases in

model in pricing models, we believe it is

essential to develop a tool kit that has the

ability to measure the chances of whether a

flight ticket would be a valid and accepted by a

given stakeholder (consumer and the airlines),

given all the attributes of such a ticket. Not

only because such a tool would be able to

measure whether a difference between different

protected groups exist in terms of price

acceptance and the price of that they are being

offered, which would allow a thorough

investigation in pricing. But also we believe it

would be useful for all stakeholders to see



whether a given price and a given set of ticket

attributes would be realistic or not. Since all

the data in the datasets are the prices that are

already being accepted by both sides.

Therefore, we would be able to use the data

from the dataset to measuring the chances of a

hypothetical ticket would be accepted, by

developing a model to compare the

hypothetical ticket with the dataset itself, given

we have an ability to determine a variable that

would represents the probability of a given

entry in the dataset.

The price sensitivity model is a model that

predicts on a scale from 0-1 to showcase

whether the price would be offered. This is a

model based on using the distribution (CDF) of

the airfare of a given city-pair origin and

destination and the carrier from the DB1B

dataset. The CDF serves as an indicator of

whether a given airfare would appear to

indicate how sensitive a given fare is to the

stakeholders (Airline and Passengers), as it is

able to capture the probability of whether a

given ticket would be valid.

The initial model of such a prediction runs

extremely well, our first initial model uses

sci-kit learn’s linear regression

(sklearn.linear_model.LinearRegression), and

LightGBM’s (lightgbm.LGBMRegressor).

Since the large scale of the dataset, we decided

the initial model would only train a small

subset that is randomly selected from 2018 Q2,

and test on another subset of the same quarter.

We believe such an approach to test and train

our model would appropiate during our initial

stage, as we are only finding ways to see what

model approach and variable would be a best

predictor. Details of the best initial model are

shown on the website.

FareClass Model

Another model utilized within model

development was the FareClass Model. The

FareClass Model is a random forest classifier

that predicts if the given ticket is either a

favorable or unfavorable FareClass. The

classification for the FareClass feature was

determined through the distribution of the

FarePerMile attribute for each of the

FareClass. Observing the distributions,

favorable classes had distributions that were

centered either below or right at the average

FarePerMile for all FarePerMiles values

together. Other features incorporated into the

model included RoundTrip, DollarCred,

Passengers, ItinFare, BulkFare, Distance,

MilesFlown, White alone proportion and

Non-White alone proportion. The results from

this model revealed the limited bias within the

dataset.

Here’s the results of the following model:



The following results were gathered based on

the data from the first Q1 of 2022. The

Disparate Impact of 1.2261 on the model prior

to any mitigation methods suggests a fair

model from the very beginning. Now the focus

would be to see how Reweighing will improve

the fairness of the model. After applying the

preprocessing technique of Reweighing, we

see the model fairness improves slightly

including the balanced accuracy of the model.

We see disparate impact reducing to get closer

to the ideal value of 1 and equal opportunity

difference and theil index reducing from

0.1957 to 0.059 and 0.1542 to 0.1440

respectively. Further details about the fairness

metrics are detailed in the next section.

Fairness Metric Introduction

Bias
Mitiga
tor

Classifier BC AOD DI SPD EOD TI

None Logistic
Regression

0.876 0.059 1.243 0.166 0.067 0.065

In the next section, we will evaluate our

bias-mitigated models using various fairness

metrics provided by the AIF360 package. We

will give a thorough touch on each metric used

to better help comprehend how our models

perform. And we will interpret metrics from

our baseline model (no bias mitigator, logistic

regression)  as an example.

Balanced Accuracy (BC): 0.876. Balanced

accuracy is the mean between the true positive

rate and the true negative rate. It measures the

average accuracy obtained from both the

minority and the majority class. A score of

0.876 signals a good model performance in

identifying negative and positive classes.

However, the metric itself offers trivial

indications regarding fairness.

Average Odds Difference (AOD): 0.059. The

average odds difference value is the average

difference in False Positive Rate (FPR) and

True Positive Rate (TPR) for unprivileged and

privileged groups. A value of 0 would indicate

equality of chance of odds. Therefore, the

metric with value close to 0 would suggest

fairness: The FPR and TPR are relatively

similar between privileged groups and

unprivileged groups.

Disparate Impact (DI): 1.243. It is the

probability of positive classification in the

unprivileged group divided by the probability

of positive classification in the privileged

group. In a fair situation, we expected DI to be

close to 1. Therefore, the metric with value of

1.243 signals unfairness even though the

results favor the under-privileged groups: the

probability of positive classification is

significantly higher in the under-privileged

group than the privileged group.



Statistical Parity Difference (SPD): 0.166. The

metric measures the differences between the

probability of positive classification in the

unprivileged group and the probability of

positive classification in the privileged group.

A value that is different from 0 will indicate

unfairness as the probability of positive

classification is different between privileged

and unprivileged groups. A positive value here

would agree with the DI value found above,

where the probability of positive classification

is significantly higher in the under-privileged

group than the privileged group.

Equal Opportunity Difference (EOD): 0.067.

This metric measures the difference between

the TPR of the unprivileged group and the true

positive rate of the privileged group. A value

that is significantly different than 0 will

indicate unfairness as the TPR is different

between privileged and unprivileged groups.

Therefore, the metric with value close to 0

would suggest fairness: The TPR is relatively

similar between privileged group and

unprivileged group.

Theil Index (TI): 0.065. Theil index is the

generalized entropy index with alpha = 1. It

measures an entropic "distance" the population

is away from the "ideal" egalitarian state. 0

will indicate perfect equality, and 1 will

indicate maximum inequality. Since the value

is not exactly 0, the metric reveals at least

some level of unfairness.

Bias Analysis & Mitigation

High Price Indicator Model

In order to measure for potential biases, we are

using the AI Fairness 360 package. However,

throughout the model development process, we

have found that there was often little to no bias

in the models to mitigate in the first place. The

baseline logistic regression model had a

disparate impact value of 1.24 and a statistical

parity difference of 0.16, which are both signs

that our unprivileged class is receiving more

favorable outcomes than our privileged class.

Using a RandomForestClassificaiton model

instead results in less bias, but the performance

of the model suffers down to about 60%

accuracy. As mentioned prior, the magnitude of

these biases is already small but we can still

mitigate them in order to see how they would

affect the performance of the model.

For example, with a preprocessing technique

known as reweighing, where weights are

assigned to each group combination prior to

classification, our logistic regression model

has a disparate impact value of 1 and a

statistical parity difference of almost 0 which

means that the bias was mitigated.

Additionally, the performance only drops down

to 86%, which can be considered negligible.

This similarly improved the bias mitigation for

our Random Forest model too and even

resulted in a small boost in accuracy.



Another technique we can apply called

prejudice remover is an in-processing

technique where a discrimination-aware

regularization term is added. This managed to

mitigate the bias by a small amount but was

largely ineffective in significantly dealing with

bias. It did, however, manage to maintain a

high accuracy of about 87% which is as good

as the accuracy seen in the reweighed logistic

regression classifier.

Bias
Mitigator

Classifier BC AOD DI SPD EOD TI

None Logistic
Regression

0.8759 0.0598 1.2428 0.1661 0.0678 0.0649

None Random
Forest

0.5945 0.1017 1.0759 0.0698 0.0064 0.0512

Reweighting Logistic
Regression

0.8644 -0.040
5

1.0031 0.0023 0.0183 0.0756

Reweighting Random
Forest

0.6106 0.0033 1.0082 0.0077 0.0052 0.0511

Prejudice
Remover

Logistic
Regression

0.8693 0.0349
2

1.2126 0.1444 0.05648 0.0720

BC: Best Balanced Accuracy

AOD: Average Odds Difference

DI: Disparate Impact

SPD:  Statistical Parity Difference

EOD:  Equal Opportunity Difference

TI: Theil Index

With regards to the actual application of a bias

mitigator in the model pipeline and the fairness

implications, this would add weights to our

data with the goal of achieving a disparate

impact of 1 at the preprocessing stage or before

any actual decision making is done. Here,

group affiliation and fairness is taken into

consideration for each individual prior to any

decision. The cost of a false negative or a false

positive in this case would most likely be more

severe for our unprivileged class but we have

found that there did not seem to be much

quantifiable bias in our model results against

the unprivileged class to begin with. However,

as we are determining our classes by the

majority population in the flight origin and

destination, the bias we mitigated through

reweighing could prove to still be beneficial to

the minority populations traveling in the white

majority cities as the FarePerMile in general

would be lower.

Price Sensitivity Model

To improve accuracy on the protected group

compared to the privilege group, reweighting

was applied to the protected group to address

the issue of bias. As a result, the accuracy of

the protected group increased from .85 to .9,

indicating some degree of bias mitigation.

However, the accuracy of the privilege group

decreased from .97 to .94. It is important to

note that the accuracy of the original test set

remained unchanged, indicating that

oversampling did not negatively affect the

generalizability of the model. The

oversampling technique represents an effort to

promote fairness in the model’s predictions for

both the privilege and protected groups.

Since the oversampling technique work

reasonably well on the initial model, therefore,

we decided to build our final model based on

such an assumption. Details of performance of

the final model could be found on the website.



Conclusion

By investigating the potential bias within flight

ticket pricing models, we obtain a thorough

understanding of current problems within this

complicated system. We do discover

correlations between pricing differences and

demographics. Yet, we did not observe evident

bias with respect to race and income through

our pricing model development. Regardless,

we utilize fairness metrics and bias mitigation

methods to create and evaluate a model that is

both accurate and unbiased. And we believe

fairness metrics, like Disparate Impact, would

serve as a great indicator that allows

consumers to understand whether they are

price discriminated against and whether they

are paying the fair price. We believe our

findings provide inspiration and a solid

foundation for the next step of discoveries,

where the flight ticket pricing models can be

held under even more stringent inspection

when future researchers have access to ticket

data with finer details or more advanced

computation methods. We think that the

variation of price sensitivity between

privileged and underprivileged groups would

be an interesting research topic that builds on

top of our project. We expect that fair pricing

models should result in similar price sensitivity

between the privileged and underprivileged

groups. “Under the current pricing model, do

underprivileged groups have to accept limited

ranges of high prices, thus having lower price

sensitivity compared to the privileged groups?”

would be a potential question to ask in that

case.
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